How to use high bitrates in a CAN-system with CAN-FD/EF

Presentation at ICC 11-12 2013 in Paris

Copyright Kvaser AB November 2013

The test and verification Hardware

- Altera Cyclone IV FPGA, with 15k logic elements.
- FPGA includes PCI-express physical layer.
- 4 CAN-channels CAN/CAN-FD/CAN-EF.
- Galvanic isolation

The test and verification Hardware

High Speed Data Phase

- 5x Bit Rate in Data Phase
- 1 Byte transmitted
- CAN work with 8 MHz sample at 1 Mbit/s
- CAN-FD work with 20 MHz sample at 5 Mbit/s
- CAN-FD is less demanding for the logic.

Sample clock at different bit-rates

- The header show the bit definition for a typical bit.
- The value in the column is the necessary sampleclock for different bit-rates with this bit-definition.

Bit-rate Bit/s	CAN 8 Tq/ MHz	CAN 4 Tq/ MHz	CAN-FD 5 Tq/ MHz	CAN-FD 4 Tq/ MHz	CAN-FD 3 Tq/ MHz
62.5 k	0,500	0,250	0,312	0,250	0,187
125 k	1	0,500	0,625	0,500	0,375
250 k	2	1	1,250	1	0,750
500 k	4	2	2,500	2	1,500
1 M	8	4	5	4	3
2 M	16	8	10	8	6
3 M			15	12	9
4 M			20	16	12
5 M			25	20	15

To use CAN-FD is less complex compared to

Increase CAN bit-rate

• The only problem is modification of software to use more than 8 byte of data.

Side by side comparison

- Top graph is 8 Byte CAN at 0,5 Mbit/s.
- Lower graph is 64 byte at 4 Mbit/s. Shorter in time because CRC is shorter.

Block diagram over one, out of four, CAN-channels in the FPGA

Advanced CAN Solutions

The bit-logic block

• Blue: TX-bit path

• Red: RX-bit path

• Green: High speed clock.

Logic added for CAN-FD

- CRC-17 and CRC-21
- Special Stuffing for the CRC-17, -21
- SSP, Secondary sample point
- No Error logic shown

• Extra control logic to select the correct bit

path thru logic.

Different DLC-coding

DLC	CAN Bytes	CAN-FD Bytes	CAN-FD CRC-
8-0	0-8	0-8	17
9	8	12	17
10	8	16	17
11	8	20	21
12	8	24	21
13	8	32	21
14	8	48	21
15	8	64	21

- Classic CAN will always have CRC-15.
- Remote Request in Classic CAN will always have 0 byte of data for any DLC.
- CAN-FD do have a different stuffing in the CRC-bits.

Different selections in the Logic

- 11-bit or 29-bit ID
- Use of DLC including remote request.
- Use of high bit-rate.
- Use of SSP.
- Use of CRC.
- Use of stuffing.

CRC and stuffing

- Classic CAN do stuffing after CRC-15
- CAN-FD do stuffing before CRC-17/21.
- CAN-FD have a special stuffing of CRC.

Secondary Sample Point, SSP

- Used for bit-error check when transmitting bits at data-rate.
- The loop delay from through transceiver is measured.
- The bit match will be delayed according to the measurement.

Live demonstration of CAN-EF

- CAN Enhanced Format, CAN-EF.
- The intermediate step from CAN to CAN-FD.
- Can be mixed with Classic CAN and CAN-FD.

CAN-EF solution

Why combine CAN-EF and CAN-FD?

- A step by step migration from Classic CAN to CAN-FD via CAN-EF.
- CAN-EF will increased band width within existing CAN-systems.
- CAN-EF improved CRC will cover also the Classic CAN-messages.
- Limited impact on CAN products available today.
- The diagnostic tools can stay with legacy bit-rates, only control applications running at higher CAN-EF bit-rates.
- CANopen can be unchanged still utilize higher band width CAN-EF.
- Limited impact on the silicon industry product portfolio.

